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Abstract 

In this paper it deals with an interdependent queueing models with bulk service having variable capacity. In this 

paper two types of interdependent queueing models with bulk service are studied namely Queueing models with 

arrival and service process being poissonian and follows a bivariate Poisson process and second is Queueing models 

with arrival process in poissonian and  service process is Earlangian having interdependence on each other . The 

system characteristics of these models are analyzed.  

Keywords: The system characteristics like, mean queue length, variability of the system size, coefficient of 

variation are derived and analyzed in the light of the dependence parameter. These models also include the earlier 

models as particular cases for specific values of the parameters. 

 

1. Introduction 

 In the bulk service queueing models, bailley (1954) and Jaiswal (1960) considered units arrive at 

random from a single queue in order of arrival and are served in batches, the size of each batch 

being either a fixed number of customers or the whole queue length whichever is smaller. 

Jaiswal (1961) extended this model to the case, where at a service epoch if m (0𝛿𝑚𝛿𝑠) persons 

or the whole queue length whichever is smaller will be taken into service. However, in these 

models the arrivals and service processes are independent. But in some situations, like an 

elevator or at a bus stop, etc. the service process depends on the arrival process in order to have 

optimal operating policies. So, for this kind of situations, we develop and analyze the 

interdependent queueing models with service. In this paper, two modifications are considered 

namely (i) the arrival and service processes are poissonian and follows a Poisson processes and 

(ii) the arrival and services processes are poissonian and Erlangian respectively with 

interdependent arrival and service processes. In both the models the system behavior is analyzed 

by obtaining the difference – differential equations of the model and solving them through 

generating function techniques.  
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2. 𝑴 𝑴[𝑿]⁄ /𝟏  Interdependent Queuing model with Variable Service Capacity 

In this paper, we consider the single server queueing system with interdependent arrival and 

service process having the bulk service with variable capacity. Here, we assume that the server 

serves only at instants 𝑡1 , 𝑡2 … … … . , 𝑡𝑛 … … ….   if 𝑚 (0 𝛿 𝑚 𝛿 𝑠 ) persons are present in the 

waiting line at time 𝑡𝑛 then the server takes a batch of (𝑠 − 𝑚) persons or whole queue length 

whichever is smaller, where 𝑠 is the service capacity. Let 𝑏𝑚 be the probability that there are m 

customers remaining with the server at a service epoch( ∑ 𝑏𝑚 = 1 ). Here, we assume that the 

arrival of the customers and the number of service completions of the batches are correlated and 

follows a bivariate Poisson process. Let 𝑃𝑛(𝑡) be the probability that there are n customers in the 

queue at at time t. With dependence structure, the difference – differential equations of the model 

are  

    P0
′ (t) =  −(λ + μ − 2 ∈)P0(t) + (μ − ϵ) ∑ Bs−m Pm(t)s

m=0        

 𝑃𝑛
′ (𝑡) =  −(𝜆 + 𝜇 − 2 ∈)𝑃𝑛(𝑡) + (𝜆 − 𝜖)  𝑃𝑛−1(𝑡) + (𝜇 − 𝜖) ∑ 𝐵𝑠−𝑚 𝑃𝑛+𝑚(𝑡)𝑠

𝑚=0      , For n >0                                                                                                                                              

                  (2.1) 

 Where 𝐵𝑚  ∑ 𝐵𝑞
𝑚
𝑞=0   (is the probability that there are m or fewer customers present with the 

server). Assuming the steady-state of the system, the steady-state transition equations of the 

model are.                                                                       

(𝜆 + 𝜇 − 2 ∈)𝑃0(𝑡) + (𝜇 − 𝜖) ∑ 𝐵𝑠−𝑚 𝑃𝑚(𝑡)𝑠
𝑚=0 = 0                                                               

(𝜆 + 𝜇 − 2 ∈)𝑃𝑛(𝑡) + (𝜆 − 𝜖)  𝑃𝑛−1(𝑡) − (𝜇 − 𝜖) ∑ 𝐵𝑠−𝑚 𝑃𝑛+𝑚(𝑡)𝑠
𝑚=0 = 0                         (2.2)  

We solve these steady-state equations using generating function approach,    

Let (𝑦) = ∑ 𝑦𝑛∞
𝑛=0 𝑃𝑛 , be the generating function of  𝑃𝑛 .                                            

Following the heuristic argument of Jaiswal (1961), we get the probability generating function of 

𝑃𝑛 as 

   𝑃(𝑦) =
(𝜇−𝜖)[∑ {𝑦𝑠∅𝑠−𝑞(1)−𝑦𝑞∅𝑠−𝑞(𝑦)}𝑠−1

𝑞=0 𝑃𝑞]

𝑦𝑠[(𝜆+𝜇−2∈)−(𝜆−𝜖)  𝑦]−(𝜇−𝜖) ∑ 𝑏𝑚𝑦𝑚 𝑠
𝑚=0

                                                           (2.3) 

Using Roche’s theorem, the denominator of the equation (2.3) can be shown to have (s-1) zeros 

inside the unit circle, one at 𝑦 = 1and the remainder outside the unit circle  [𝑦] = 1 .      

However, this requires the condition  

  (𝜆 − 𝜖)   < (𝑠 − ∑ 𝑚 𝑏𝑚
𝑠
𝑚=0 )(𝜇 − 𝜖)                                                                                     (2.4) 

This condition is obviously statistical equilibrium                                                               

therefore 𝑃(𝑦) can be written as                                                                                             

𝑃(𝑦) =
𝐶

∏(𝑦−𝑦𝑖)
                                                                                                                          (2.5) 

Where 𝑦𝑖 the roots of modulus are greater than one and the product should carry out over all 

roots with modulus greater than one of the equation  
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 𝑦𝑠 − ∑ 𝑏𝑚𝑦𝑚 {
𝜇−𝜖

(𝜆+𝜇−2∈)−(𝜆−𝜖)  𝑦
} = 0𝑠

𝑚=0                                                                             (2.6) 

 Using the boundary condition, p (1) =1, we obtain   𝐶 = ∏(1 − 𝑦𝑖)                    (2.7)     

                                        

Where 𝑦𝑖  is as given in equation (2.6) Thus, we have  

 𝑃(𝑦) =
(𝜆+𝜇−2∈)−(𝜆−𝜖)  𝑦−(𝜇−𝜖)

(𝜆−𝜖)(1−𝑦)
 ∏ (

1−𝑦𝑖

𝑦−𝑦𝑖
)                                                                                 (2.8) 

 Where 𝑦𝑖  is as given in equation (2.6)                                                                                           

Using the probability generating function, we can analyze the system behavior of this model. 

Expanding equation (2.8) and collecting the coefficient of y
n,

 will give us the probability that 

there are n customers in the system. 

3. Measures of Effectiveness 

The probability that the system is empty can be obtained as  

 𝑃0 = ∏ (1 −
1

𝑦𝑖
)                                                                                             (3.1)  

Where 𝑦𝑖’s are as given in equation (2.6)                                                                                           

For given values of 𝜆 and 𝜇 and for various values of 𝜖 and s , and for given values of s and  𝜖 

and for various values 𝜆 and 𝜇 the values of  𝑃0 are computed and are given in tables (01)       

and (02) 

                                       Table (01) Values of P0   𝜆 =1, 𝜇 =6 

          

                                            

 
Table (02) Values of P0 𝑆=3, ∈ = 0.4 

          

 

𝑠
∈⁄  0 0.2 0.4 0.6 0.8 

1 0.6667 0.7241 0.7857 0.8333 0.9867 

2 0.7532 0.8110 0.8505 0.8945 0.9439 

3 0.8055 0.8536 0.8693 0.9072 0.9504 

4 0.8194 0.8471 0.8782 0.9134 0.9536 

5 0.8273 0.8537 0.8833 0.9170 0.9555 

𝜇
 𝜆 ⁄  1 2 3 4 

5 0.8437 0.6389 0.4767 0.3412 

6 0.8693 0.6920 0.5479 0.4259 

7 0.8877 0.7313 0.6016 0.4903 

8 0.9015 0.7617 0.6436 0.5411 
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From table (01) and equation (2.9), it is observed that the value of  𝑃0 increases as 𝜖 increases for 
fixed values of  𝜆 , 𝜇 and. It is also noticed from table (01) and equation (2.9) that the p increases 
as the batch size s increases for fixed values of 𝜆 , 𝜇 and   𝜖  .The values increases of  𝑃0  
increases as the service rate 𝜇 increases for given values of 𝜆 , 𝜖 and 𝑠 . It decreases as the arrival 
rate increases for fixed values of 𝑠 , 𝜇 and   𝜖  .                                                                                     
The average number of customers in the system can be obtained by differentiating P(y) with 

respect to y and substituting y=1.From equation (2.8) and L-Hospital’s rule, we have                                                                        

𝐿 = ∑
1

1−𝑦𝑖
                                                                                                                 (3.2) 

Where 𝑦𝑖’s are as given in equation (2.6)                                                                                       

Using equation (10), we have computed the values of L for various values of 𝜖 and s and for 

fixed values of 𝜆 and 𝜇 are presented in table (03). For fixed values of  𝑠,  𝜖 and for various 

values of   𝜆 and  𝜇 and the values of L are given in table (04). From table (03) and eqn. (3.2) it is 

observed that the average number of   

                                       Table (03) Values of  𝜆 =1, 𝜇 =6 

          

 

 

 

                                               

       Table (04) Values of L   𝑆=3, ∈ = 0.4 

          

 

Customers decreases as the dependence parameter increases, for fixed values of, 𝜇 and  𝑠 . It is 

also noticed that the average number of customers in the system decreases as the as the batch 

size s increases for fixed values of 𝜆 , 𝜇 and   𝜖  . From table (03) and equation (3.2) it is 

observed that as increases the average number of customers in the system increases for fixed 

values of 𝑠 , 𝜇 and 𝜖 . As the service rate increases the average number of customers in the 

system decreases For fixed values of 𝑠  , 𝜆 and 𝜖. The variability of the system size is obtained by 

the formula  

               𝑉 = 𝑝′′(𝑧) + 𝑝′(𝑧) − [𝑝′(𝑧)]2⃒𝑧=1                                                                         (3.3)  

𝑠
∈⁄  0 0.2 0.4 0.6 0.8 

1 0.5000 0.3810 0.2727 0.2000 0.0135 

2 0.3278 0.2331 0.1758 0.1180 0.0595 

3 0.2415 0.1968 0.1504 0.1022 0.0522 

4 0.2205 0.1806 0.1387 0.0948 0.0487 

5 0.2087 0.1714 0.1321 0.0905 0.0466 

𝜇
 𝜆 ⁄  1 2 3 4 

5 0.1853 0.5653 1.097 1.9305 

6 0.1504 0.4450 0.8251 1.3477 

7 0.1265 0.3674 0.6623 1.0395 

8 0.1092 0.3128 0.5537 0.8482  
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Differentiating P (z) and putting z=1, we get,                                                                               

𝑉 = ∑
1

(𝑦𝑖−1)2 + ∑
1

𝑦𝑖−1
                                                                                (3.4)  

Where𝑦𝑖’s are as given in equation (2.6)                                                      

𝐶. 𝑉 = √∑
𝑦𝑖

(𝑦𝑖−1)2
∑

1

𝑦𝑖−1
⁄                                                                              (3.5) 

Where  𝑦𝑖’s are as given in equation (2.6)                                                                                  

For fixed values of, 𝜇 and for various values of 𝜖 and 𝑠 the values of the variability of the system 

size and coefficient of variation are given in table (05) and table (07). The computed values of V 

and C.V for fixed 𝜖 and 𝑠 and for varying 𝜆 and 𝜇  are given in tables (06) and (08).                

From tables (2), (3) and from equations (3.4) and(3.5) it is observed that the variability of the 

system size decreases as the dependence parameter increases and coefficient of variation 

increases for fixed values of 𝑠 , 𝜇 and   𝜆  . As the batch size s increases, the variability decreases 

and coefficient of variation increases. From tables (06) and (08) and from equations (3.4) 

and(3.5) it is observed as the arrival rate increases the variability increases and coefficient of 

variation decreases for fixed values of  𝜇 ,   𝜖 and 𝑠 .                                                                                   

This model includes the earlier models as particular cases for the specific values of the 

parameters. This model becomes  M M[X]⁄ /1  model with bulk service rule when ∈= 0. 

 

                                    Table (05) Values of V  𝜆 =1, 𝜇 =6 

   

 

 

                   

 

                                           

                                            Table (06) Values of   𝑆=3, ∈ = 0.4 

          

                                    

 

 

                                            

                                     

𝑠
∈⁄  0 0.2 0.4 0.6 0.8 

1 0.7500 0.5261 0.3471 0.2400 0.2137 

2 0.4352 0.2874 0.267 0.1319 0.0630 

3 0.2999 0.2355 0.1730 0.1127 0.0549 

4 0.2691 0.2132 0.1580 0.1038 0.0510 

5 0.2523 0.2008 0.1495 0.0987 0.0488 

𝜇
 𝜆 ⁄  1 2 3 4 

5 0.2197 0.8848 2.3026 5.6763 

6 0.1730 0.6431 1.5058 3.1640 

7 0.1425 0.5023 1.1008 2.1201 

8 0.1212 0.4108 0.8603 1.5678 
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                                      Table (07) Values of C.V   𝜆 =1, 𝜇 =6 

          

 

 

 

 

                                           Table (08) Values of C.V   𝑆=3, ∈ = 0.4 

          

 

 

 

      M M⁄ /1   Model when ∈ = 0, = 1 , 𝑏0 = 1  , 𝑏1 = 0 . 

      M M⁄ /1   Interdependence model  𝑠 = 1 , 𝑏0 = 1  , 𝑏1 = 0 . 

4. 𝑴/𝑬𝑲
[𝑿]

/𝟏 Interdependent Model  

 We consider the single server queueing system where the service is in phases. Along with other 

assumptions we assume that the number of arrivals and the number of service completions in 

each phase are correlated and follows a bivariate poission distribution. As in the earlier,         

here we assume the service is available at time instants 𝑡1 , 𝑡2 … … … . , 𝑡𝑛 .  

Let 𝑏𝑚 be the probability that there are m customers present with the server in the system at a 

service epoch. Then the server takes (s-m) customers or the whole queue length whichever is 

smaller. S is the maximum size of the batch that is to be taken into service. 

 We have 𝑏 = 0  if 𝑚 > 𝑠 and  ∑ 𝑏𝑚 = 1 𝑠
𝑚=0  . With this dependence structure we develop  

  𝑀/𝐸𝐾
[𝑋]

/1 Interdependent model with bulk service. 

 Let 𝑃𝑛(𝑡) be the probability that there are n customers waiting in the queue at time t and service   

in the 𝑟𝑡ℎ phase. Using the phase - type technique, we can have the differential equation of the 

model as 

𝑃𝑛,𝑖
′(𝑡) = −(𝜆 + 𝜇 − 2 ∈)𝑃𝑛,𝑖(𝑡) + (𝜇 − 𝜖)𝑃𝑛,𝑖+1(𝑡) + (𝜆 − 𝜖)𝑃𝑛−1,𝑖(𝑡) + (𝜇 − 𝜖) ∑ 𝑏𝑠−𝑚𝑃𝑛+𝑚,1

𝑠
𝑚=0 = 1(𝑡)        

𝑛 > 0   And 𝑖 < 𝑘 

𝑃0,𝑖
′(𝑡) = −(𝜆 + 𝜇 − 2 ∈)𝑃0,𝑖(𝑡) + (𝜇 − 𝜖)𝑃0,𝑖+1(𝑡) + (𝜇 − 𝜖) ∑ 𝐵𝑠−𝑚𝑃𝑚,1

𝑠
𝑚=0 = 1(𝑡) 1 < 𝑟, 1 > 𝑘            (4.1)                                                                                                                                                                                                                

Where 𝑏𝑚 = ∑ 𝑏𝑞
𝑠
𝑞=0   

𝑠
∈⁄  0 0.2 0.4 0.6 0.8 

1 1.7321 1.9039 2.1603 2.4495 3.6603 

2 2.0127 2.3000 2.5860 3.0781 4.2213 

3 2.2672 2.4663 2.7658 3.2833 4.4901 

4 2.3528 2.5570 2.8649 3.3976 4.6419 

5 2.4065 2.6143 2.9279 3.4708 4.7397 

𝜇
 𝜆 ⁄  1 2 3 4 

5 2.5290 1.6641 1.3823 1.2321 

6 2.7659 1.8019 1.4873 1.3198 

7 2.9838 1.9292 1.5843 1.4007 

8 3.1865 2.0484 1.6741 1.4761 
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Assuming the system is in steady-state, the state transition equations of the model are  

−(𝜆 + 𝜇 − 2 ∈)𝑃𝑛,𝑖 + (𝜇 − 𝜖)𝑃𝑛,𝑖+1(𝜆 − 𝜖)𝑃𝑛,𝑖+1 + (𝜇 − 𝜖) ∑ 𝑏𝑠−𝑚𝑃𝑛+𝑚,1
𝑠
𝑚=0 = 0  

−(𝜆 + 𝜇 − 2 ∈)𝑃0,𝑖 + (𝜇 − 𝜖)𝑃0,𝑖+1(𝜆 − 𝜖) ∑ 𝐵𝑠−𝑚𝑃𝑚,1
𝑠
𝑚=0 = 0                                        (4.2)              

To solve these steady-state equations, we adopt the generating function approach. 

 Let ∑ 𝑦𝑛∞
𝑛=0 𝑃𝑛                             (4.3) 

be the generating function of 𝑃𝑛  .                                                                                                                                             

Following the heuristic argument of Jaiswal (1961), we get the probability the generating 

function of 𝑃𝑛  as,    

𝑃𝑛(𝑦) =
(𝜇−𝜖)𝑘[∑ {𝑦𝑠∅𝑠−𝑞(1)−𝑦𝑞∅𝑠−𝑞(𝑦)}𝑠−1

𝑞=0 𝑃𝑞]

[(𝜆+𝜇−2∈)−(𝜆−𝜖) 𝑦]𝑘𝑦𝑠−(𝜇−𝜖)𝑘  ∑ 𝑏𝑚𝑦𝑚 𝑠
𝑚=0

                        (4.4) 

Applying Roche’s Theorem for the denominator, we get  

[(𝜆 + 𝜇 − 2 ∈) − (𝜆 − 𝜖) 𝑦]𝑘𝑦𝑠 − (𝜇 − 𝜖)𝑘  ∑ 𝑏𝑚𝑦𝑚 𝑠
𝑚=0                                                (4.5) 

It can be shown to have (s-1) zeros inside the unit circle and one at 𝑦 = 1and the remainder 

outside the unit circle  |𝑦| = 1 . However this requires the condition,                                        

𝑘(𝜆 − 𝜖) < (𝜇 − 𝜖)[𝑠 − ∑ 𝑚𝑏𝑚 𝑠
𝑚=0 ]                              (4.6)  

The condition is necessary for statistical equilibrium. Thus 𝑃(𝑦) can be written as               

𝑃(𝑦) =
𝐶

∏(𝑦−𝑦𝑖)
                                                                                                                           

(4.7)  

Where 𝑦𝑖′𝑠 are roots of the modulus greater than one of the equation?  

[(𝜆 + 𝜇 − 2 ∈) − (𝜆 − 𝜖) 𝑦]𝑘𝑦𝑠 − (𝜇 − 𝜖)𝑘  ∑ 𝑏𝑚𝑦𝑚   = 0 𝑠
𝑚=0                                       (4.8) 

Using the boundary condition p (1) =1, we obtain,  

𝐶 = ∏(1 − 𝑦𝑖)                                                                                                        (4.9) 

Thus,                                                                                 

𝑃(𝑦) =
[(𝜆+𝜇−2∈)−(𝜆−𝜖) 𝑦]𝑘−(𝜇−𝜖)𝑘 

(𝜇−𝜖)𝑘−1(𝜆−𝜖) (1−𝑦) 
∏ (

1−𝑦𝑖

𝑦−𝑦𝑖
)                                                                      (4.10)                                              

Where 𝑦𝑖′𝑠 are given in equation (4.8)                                                                                       

Using the probability generating function, we can analyze the system behavior of this model. 

Expanding the equation (4.10) and collecting the coefficient of y
n
, will give us the probability 

that there are n customers in the system.  
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5. Measures of Effectiveness 

The probability that the system is empty can be obtained as  

𝑃(𝑦) =
(𝜆+𝜇−2∈)𝑘−(𝜇−𝜖)𝑘 

𝑘(𝜇−𝜖)𝑘−1(𝜆−𝜖)  
∏ (1 −

1

𝑦𝑖
)                         (5.1) 

Where 𝑦𝑖′𝑠 are given in equation (4.8)                                                                                        

Using the equation (5.1), the values of 𝑃0  are computed for various values of s and for fixed 

values of 𝜆 , 𝜇  and k and are given in table (09). From table (09) it is observed that the values of 

P increases as 𝜖 increases for fixed values of 𝜆 , 𝜇  and k. It is also noticed that the values of 𝑃0  

increases as the batch size s increases for fixed values of 𝜆 , 𝜇 and k 

                                      Table (09) Values of 𝑷𝟎  K=2, 𝜆 =1, 𝜇 =6 

          

 

 

 

The average number of customers in the system can be obtained by differentiating P(y) with 

respect to y and substituting y=1.                                                                                                 

From equation (2.2, 2.4 and 3.3) and L-Hospital’s rule, we have                                                                  

𝐿 = ∑ (
1

𝑦𝑖−1
) +

(𝑘−1)

2
[

𝜆−𝜖

𝜇−𝜖
]                                                      (5.2)                                                        

Where 𝑦𝑖’s are as given in equation (4.8)                                                                                    

Using equation (5.2) we have computed the values of L for various values of  𝜖 and 𝑠 and are 

presented in table (10).                                                                                                                 

From table (10) it is observed that the values of L decrease as 𝜖 increases for fixed values of 𝜆 , 𝜇  

and k. And it is also noticed from table (10) that the values of L decreases as the batch size 

increases.        

                                   Table (10) Values of L K=2, 𝜆 =1, 𝜇 =6 

          

 

𝑠
∈⁄  0 0.2 0.4 0.6 0.8 

1 0.3611 0.4792 0.7716 0.7294 0.8781 

2 0.6270 0.6868 0.7533 0.8252 0.9069 

3 0.6938 0.7403 0.7925 0.8519 0.9202 

4 0.7228 0.7640 0.8107 0.8463 0.9266 

𝑠
∈⁄  0 0.2 0.4 0.6 0.8 

1 1.7499 1.0767 0.2923 0.3689 0.1408 

2 0.5857 0.4502 0.3259 0.2104 0.1023 

3 0.4335 0.3457 0.2588 0.0.1725 0.0864 

4 0.3762 0.3030 0.2306 0.1556 0.0789 
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The variability of the system size is obtained by using the formula (11). Thus we have, 

𝑉 = [∑
1

(𝑦𝑖−1)2
+ ∑

1

𝑦𝑖−1
+ (∑ [

1

𝑦𝑖−1
])

2

] +
1

3
(𝑘 − 1)(𝑘 − 2) (

𝜆−𝜖

𝜇−𝜖
) − (𝑘 − 1) (

𝜆−𝜖

𝜇−𝜖
) ∑

1

𝑦𝑖−1
+

(𝑘−1)

2
[

𝜆−𝜖

𝜇−𝜖
] − [∑

1

𝑦𝑖−1
+

(𝑘−1)

2
[

𝜆−𝜖

𝜇−𝜖
]]

2

          (5.3) 

Using equation (5.3) we have computed the values of V for various values of k and  𝜖  and for 

for fixed values of 𝜆 ,  𝜇 and 𝜖 and also for various values of 𝑠 and 𝜖 and for fixed values of 𝜆 , 𝜇  

and k.                                                                                                                               

The coefficient of variation of the system is                                                                               

𝐶. 𝑉 = √𝑉 𝐿⁄                                                                                                                                 

Where V and L are as given in equations (5.2) and (5.3) respectively.                                           

The values of V and C.V are computed for various values of, 𝑠 and for fixed values of of 𝜆 ,  𝜇 

and k and are presented in table (11) and (12). 

                                            

                                              Table (11) Values of V K=2, 𝜆 =1, 𝜇 =6 

          

 

                                                          

                                          Table (12) Values of   K=2, 𝜆 =1, 𝜇 =6 

          

 

It is observed that as s increases the variability of the system size decreases and the coefficient of 

variation increases as the dependence parameter increases the variability of the system size 

decreases and the coefficient of variation increases for fixed values of 𝜆 , 𝜇  and k. It is also 

noticed that as k increases the system variability increases for fixed values of  𝜆 , 𝜇 , 𝜖 and 𝑠 and 

the coefficient of variation decreases for fixed values of  𝜆 , 𝜇 , 𝜖 and 𝑠. As the dependence 

𝑠
∈⁄  0 0.2 0.6 0.8 

1 4.7704 2.2149 0.5008 0.1948 

2 0.9091 0.6405 0.2515 0.1120 

3 0.6047 0.4542 0.1993 0.0931 

4 0.5019 0.3860 0.1770 0.0843 

𝑠
∈⁄  0 0.2 0.6 0.8 

1 1.2481 1.3822 1.9183 2.8825 

2 1.6279 1.7775 2.3839 3.2709 

3 1.7939 1.9494 2.5881 3.5220 

4 1.8834 2.034 2.7031 3.6823 
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parameter increases the variability of the system size decreases and the coefficient of variation 

increases for fixed values of 𝜆 , 𝜇 ,k and s. 

6.  Conclusions 

This paper considered the single server queueing system with interdependent arrival and service 

process having the bulk service with variable capacity. The arrival of the customers and the 

number of service completions of the batches are correlated and follows a bivariate Poisson 

process. The average number of customers in the system decreases as the as the batch size. 

Increases.. As the service rate increases the average number of customers in the system decreases 

It is observed that the variability of the system size decreases as the dependence parameter 

increases and coefficient of variation increases .As the batch size s increases, the variability 

decreases and coefficient of variation increases.  This model includes the earlier models as 

particular cases for the specific values of the parameters.                         
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